ai calculator learanadeAI

Weierstrass substitution Calculator

Ask and get solution to your homeworkAsk now and get step-by-step solutions
Example
Created on 2024-06-20Asked by Chloe Moore (Solvelet student)
Use the Weierstrass substitution to evaluate the integral dxx2+a2\int \frac{dx}{\sqrt{x^2 + a^2}}.

Solution

To evaluate the integral dxx2+a2\int \frac{dx}{\sqrt{x^2 + a^2}} using the Weierstrass substitution, we make the substitution x=atanθx = a\tan\theta. 1. **Determine the differential dxdx:** Differentiating both sides of x=atanθx = a\tan\theta with respect to θ\theta, we get: dx=asec2θdθ. dx = a\sec^2\theta d\theta. 2. **Substitute for xx and dxdx:** Substituting x=atanθx = a\tan\theta and dx=asec2θdθdx = a\sec^2\theta d\theta into the integral, we get: asec2θdθa2tan2θ+a2. \int \frac{a\sec^2\theta d\theta}{\sqrt{a^2\tan^2\theta + a^2}}. 3. **Simplify the integrand:** asec2θdθa2tan2θ+a2=asec2θdθa2(tan2θ+1). \int \frac{a\sec^2\theta d\theta}{\sqrt{a^2\tan^2\theta + a^2}} = \int \frac{a\sec^2\theta d\theta}{\sqrt{a^2(\tan^2\theta + 1)}}. =asec2θdθa2sec2θ=dθ. = \int \frac{a\sec^2\theta d\theta}{\sqrt{a^2\sec^2\theta}} = \int d\theta. 4. **Evaluate the integral:** dθ=θ+C. \int d\theta = \theta + C. 5. **Convert back to xx:** Since x=atanθx = a\tan\theta, we have tanθ=xa\tan\theta = \frac{x}{a}. Therefore, the final result is: dxx2+a2=arctan(xa)+C. \int \frac{dx}{\sqrt{x^2 + a^2}} = \arctan\left(\frac{x}{a}\right) + C. Solved on Solvelet with Basic AI Model
Some of the related questions asked by William Hill on Solvelet
1. Use the Weierstrass substitution to evaluate the integral 1+sin(x)1dx\int \frac{1+\sin(x)}{1} dx.2. Simplify the integral 1+tan2(x)dx \int \frac{1 + \tan^2(x)}{dx} using the Weierstrass substitution.,
DefinitionThe Weierstrass substitution is a method used for the reduction of integrals involving trigonometry to integrals involving rational functions. It converts the trigonometric expressions into rational ones by using the trigonometric identities. Illustration: Replace t=tan(2x​​) ⇒ sin(x)dx​ becomes equal to 1+t22dt.
Need topic explanation ? Get video explanation
@Copyright Solvelet 2024Privacy PolicyTerms and Condition