ai calculator learanadeAI

Vector Operations Calculator

Ask and get solution to your homeworkAsk now and get step-by-step solutions
Example
Created on 2024-06-20Asked by Samuel Wright (Solvelet student)
Compute the dot product and cross product of the vectors a=1,2,3\mathbf{a} = \langle 1, 2, 3 \rangle and b=4,5,6\mathbf{b} = \langle 4, 5, 6 \rangle.

Solution

To compute the dot product and cross product of the vectors a=1,2,3\mathbf{a} = \langle 1, 2, 3 \rangle and b=4,5,6\mathbf{b} = \langle 4, 5, 6 \rangle: 1. **Dot product:** ab=14+25+36=4+10+18=32. \mathbf{a} \cdot \mathbf{b} = 1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6 = 4 + 10 + 18 = 32. 2. **Cross product:** a×b=ijk123456. \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix}. 3. **Calculate the determinant:** a×b=i(2635)j(1634)+k(1524)=i(1215)j(612)+k(58). \mathbf{a} \times \mathbf{b} = \mathbf{i}(2 \cdot 6 - 3 \cdot 5) - \mathbf{j}(1 \cdot 6 - 3 \cdot 4) + \mathbf{k}(1 \cdot 5 - 2 \cdot 4) = \mathbf{i}(12 - 15) - \mathbf{j}(6 - 12) + \mathbf{k}(5 - 8). a×b=3i+6j3k. \mathbf{a} \times \mathbf{b} = -3\mathbf{i} + 6\mathbf{j} - 3\mathbf{k}. 4. **Result:** ab=32,a×b=3,6,3. \mathbf{a} \cdot \mathbf{b} = 32, \quad \mathbf{a} \times \mathbf{b} = \langle -3, 6, -3 \rangle. Solved on Solvelet with Basic AI Model
Some of the related questions asked by Abigail Hall on Solvelet
1. Compute the dot product of the vectors 2,1,3\langle 2, -1, 3 \rangle and 3,4,1\langle -3, 4, 1 \rangle.2. Find the magnitude of the vector 1,2,2 \langle -1, 2, -2 \rangle .,
DefinitionThese operations include addition, subtraction, scalar multiplication, dot product, and cross product, and are used to perform tasks such as adding vectors together, subtracting vectors, scalar vector multiplication, dot product for dot product computation etc. in an effort to do vector manipulation in vector spaces. Example; a=⟨1,2⟩, b=⟨3,4⟩; (a.b)=1×3+2×4=11.
Need topic explanation ? Get video explanation
@Copyright Solvelet 2024Privacy PolicyTerms and Condition