ai calculator learanadeAI

Unitary Matrices Calculator

Ask and get solution to your homeworkAsk now and get step-by-step solutions
Example
Created on 2024-06-20Asked by Benjamin Lee (Solvelet student)
Determine if the matrix U=12(1ii1)U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} is unitary.

Solution

To determine if the matrix U=12(1ii1)U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} is unitary: 1. **Compute the conjugate transpose UU^\dagger:** U=12(1ii1). U^\dagger = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix}. 2. **Compute UUU U^\dagger:** UU=(12(1ii1))(12(1ii1))=12(1ii1)(1ii1). U U^\dagger = \left(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}\right) \left(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix}\right) = \frac{1}{2} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix}. 3. **Perform the matrix multiplication:** 12(1+i21(i)+i1i1+1(i)i2+1)=12(11001+1)=12(0000)=(1001). \frac{1}{2} \begin{pmatrix} 1 + i^2 & 1 \cdot (-i) + i \cdot 1 \\ i \cdot 1 + 1 \cdot (-i) & i^2 + 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 - 1 & 0 \\ 0 & -1 + 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. 4. **Result:** The matrix UU is unitary since UU=IU U^\dagger = I. Solved on Solvelet with Basic AI Model
Some of the related questions asked by William Nelson on Solvelet
1. Determine if the matrix U=[12121212]U = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} is unitary.2. Find the eigenvalues and eigenvectors of the unitary matrix V=[100i] V = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} .,
DefinitionA unitary matrix U = (Uij) is a complex square matrix that fulfills U†U = I, where U† is the conjugate transpose of U and I is the identity matrix. A unitary matrix is one that preserves the inner product in a complex vector space. An example of a Unitary matrix is (1/2​1/2​​−1/2​1/2​​)
Need topic explanation ? Get video explanation
@Copyright Solvelet 2024Privacy PolicyTerms and Condition