ai calculator learanadeAI

Trigonometry Calculator

Ask and get solution to your homeworkAsk now and get step-by-step solutions
Example
Created on 2024-06-20Asked by Scarlett Harris (Solvelet student)
Evaluate the integral 1x2dx\int \sqrt{1 - x^2} \, dx using trigonometric substitution.

Solution

To evaluate the integral 1x2dx\int \sqrt{1 - x^2} \, dx using trigonometric substitution: 1. **Substitute x=sin(θ)x = \sin(\theta):** dx=cos(θ)dθ. dx = \cos(\theta) \, d\theta. 2. **Rewrite the integral:** 1sin2(θ)cos(θ)dθ. \int \sqrt{1 - \sin^2(\theta)} \cos(\theta) \, d\theta. 3. **Simplify using cos2(θ)=1sin2(θ)\cos^2(\theta) = 1 - \sin^2(\theta):** cos2(θ)dθ. \int \cos^2(\theta) \, d\theta. 4. **Use the identity cos2(θ)=1+cos(2θ)2\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}:** 1+cos(2θ)2dθ=12(1+cos(2θ))dθ. \int \frac{1 + \cos(2\theta)}{2} \, d\theta = \frac{1}{2} \int (1 + \cos(2\theta)) \, d\theta. 5. **Integrate:** 12(θ+12sin(2θ))+C. \frac{1}{2} \left( \theta + \frac{1}{2} \sin(2\theta) \right) + C. 6. **Substitute back x=sin(θ)x = \sin(\theta):** θ=sin1(x). \theta = \sin^{-1}(x). sin(2θ)=2sin(θ)cos(θ)=2x1x2. \sin(2\theta) = 2 \sin(\theta) \cos(\theta) = 2x \sqrt{1 - x^2}. 7. **Result:** The integral 1x2dx\int \sqrt{1 - x^2} \, dx is: 12sin1(x)+14x1x2+C. \frac{1}{2} \sin^{-1}(x) + \frac{1}{4} x \sqrt{1 - x^2} + C. Solved on Solvelet with Basic AI Model
Some of the related questions asked by Mia Allen on Solvelet
1. Determine the length of side cc in the triangle below using the law of sines. [Diagram: Triangle ABC with angle C and sides aa, bb, and cc]2. Find the value of tan(π4) \tan\left(\frac{\pi}{4}\right) .,
DefinitionTrigonometry is a part of mathematics that studies the angle, the length and distance between the points, because it can be a supplementary study of the geometricalexceptionapart studying in two dimensions as shown in the figure in C (I. i), and how it is related to the sine, thecosine, and the tangent of an angle. It includes sines-cosines, tangents things. Example: For a right triangle with hypotenuse c and angle θ, sin(θ)=copposite​, cos(θ)=cadjacent ​.
Need topic explanation ? Get video explanation
@Copyright Solvelet 2024Privacy PolicyTerms and Condition