ai calculator learanadeAI

Systems of Differential Equations Calculator

Ask and get solution to your homeworkAsk now and get step-by-step solutions
Example
Created on 2024-06-20Asked by William Taylor (Solvelet student)
Solve the system of differential equations: {x˙=3x+4yy˙=4x+3y \begin{cases} \dot{x} = 3x + 4y \\ \dot{y} = -4x + 3y \end{cases}

Solution

To solve the system of differential equations: {x˙=3x+4yy˙=4x+3y \begin{cases} \dot{x} = 3x + 4y \\ \dot{y} = -4x + 3y \end{cases} 1. **Find the eigenvalues of the coefficient matrix:** A=(3443). A = \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix}. 2. **Characteristic equation:** det(AλI)=(3λ)2+16=0    λ26λ+25=0. \det(A - \lambda I) = (3 - \lambda)^2 + 16 = 0 \implies \lambda^2 - 6\lambda + 25 = 0. λ=3±4i. \lambda = 3 \pm 4i. 3. **Eigenvectors:** For λ=3+4i\lambda = 3 + 4i: (3(3+4i)443(3+4i))(v1v2)=0. \begin{pmatrix} 3 - (3 + 4i) & 4 \\ -4 & 3 - (3 + 4i) \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0. 4. **General solution:** (x(t)y(t))=e3t[c1(cos(4t)sin(4t))+c2(sin(4t)cos(4t))]. \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = e^{3t} \left[ c_1 \begin{pmatrix} \cos(4t) \\ -\sin(4t) \end{pmatrix} + c_2 \begin{pmatrix} \sin(4t) \\ \cos(4t) \end{pmatrix} \right]. 5. **Result:** The solution to the system is: {x(t)=e3t(c1cos(4t)+c2sin(4t))y(t)=e3t(c1sin(4t)+c2cos(4t)). \begin{cases} x(t) = e^{3t} (c_1 \cos(4t) + c_2 \sin(4t)) \\ y(t) = e^{3t} (-c_1 \sin(4t) + c_2 \cos(4t)) \end{cases}. Solved on Solvelet with Basic AI Model
Some of the related questions asked by Amelia Anderson on Solvelet
1. Solve the system of differential equations dxdt=3x+2y\frac{dx}{dt} = 3x + 2y, dydt=2x+y\frac{dy}{dt} = -2x + y with initial conditions x(0)=1x(0) = 1, y(0)=1y(0) = -1.2. Determine if the system of differential equations dx/dt=x+2y dx/dt = x + 2y , dy/dt=2x+3y dy/dt = -2x + 3y has a unique solution.,
DefinitionDescription of systems of differential equations: simply, a system of differential equations if a case when we have some partial differential equations which together describe behaviour of several related variables. These systems are solved using matrix algebra, eigenvalues, numerical techniques(^)( For instance, the system dtdx​=3x+4y,dtdy​=−x+y
Need topic explanation ? Get video explanation
@Copyright Solvelet 2024Privacy PolicyTerms and Condition