ai calculator learanadeAI

Singular Value Decomposition Calculator

Ask and get solution to your homeworkAsk now and get step-by-step solutions
Example
Created on 2024-06-20Asked by Mason Williams (Solvelet student)
Compute the singular value decomposition (SVD) of the matrix [1001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.

Solution

To compute the singular value decomposition (SVD) of the matrix [1001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}: 1. **Define the matrix:** A=[1001]. A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. 2. **Compute the singular values:** The singular values are the square roots of the eigenvalues of ATAA^TA: ATA=[1001]T[1001]=[1001]. A^TA = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^T \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. The eigenvalues are 11 and 11, so the singular values are 11 and 11. 3. **Compute the matrices UU, Σ\Sigma, and VV:** U=[1001],Σ=[1001],V=[1001]. U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad V = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. 4. **Result:** The SVD of the matrix is: A=UΣVT=[1001][1001][1001]T. A = U \Sigma V^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^T. Solved on Solvelet with Basic AI Model
Some of the related questions asked by James Hall on Solvelet
1. Compute the singular value decomposition of the matrix A=[1234] A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} .2. Use singular value decomposition to approximate the matrix A=(2334) A = \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix} with a rank-1 matrix.,
Definition Singular Value Decomposition (SVD) is a factorization of a real or complex matrix. It extends the eigendecomposition of a square matrix to any m×n matrix. For example: LET A BE A MATRIX, THEN, SVD WILL BE A=UΣV∗., WHERE U AND V ARE UNITARY MATRICES AND Σ IS DIAGONAL MATRIX OF SINGULAR VALUES.
@Copyright Solvelet 2024Privacy PolicyTerms and Condition