ai calculator learanadeAI

Row Reduced Echelon Form Calculator

Ask and get solution to your homeworkAsk now and get step-by-step solutions
Example
Created on 2024-06-20Asked by Mia Brown (Solvelet student)
Find the row reduced echelon form of the matrix: [123456789]. \left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right].

Solution

To find the row reduced echelon form (RREF) of the matrix: [123456789]. \left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right]. 1. **Write the augmented matrix:** [123045607890]. \left[\begin{array}{ccc|c} 1 & 2 & 3 & 0 \\ 4 & 5 & 6 & 0 \\ 7 & 8 & 9 & 0 \end{array}\right]. 2. **Perform row operations to achieve RREF:** - Subtract 4 times the first row from the second row: R2R24R1    [123003607890]. R2 \leftarrow R2 - 4R1 \implies \left[\begin{array}{ccc|c} 1 & 2 & 3 & 0 \\ 0 & -3 & -6 & 0 \\ 7 & 8 & 9 & 0 \end{array}\right]. - Subtract 7 times the first row from the third row: R3R37R1    [1230036006120]. R3 \leftarrow R3 - 7R1 \implies \left[\begin{array}{ccc|c} 1 & 2 & 3 & 0 \\ 0 & -3 & -6 & 0 \\ 0 & -6 & -12 & 0 \end{array}\right]. - Divide the second row by -3: R2R23    [1230012006120]. R2 \leftarrow \frac{R2}{-3} \implies \left[\begin{array}{ccc|c} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & -6 & -12 & 0 \end{array}\right]. - Add 6 times the second row to the third row: R3R3+6R2    [123001200000]. R3 \leftarrow R3 + 6R2 \implies \left[\begin{array}{ccc|c} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]. - Subtract 2 times the second row from the first row: R1R12R2    [101001200000]. R1 \leftarrow R1 - 2R2 \implies \left[\begin{array}{ccc|c} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]. 3. **Result:** The row reduced echelon form of the matrix is: [101001200000]. \left[\begin{array}{ccc|c} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]. Solved on Solvelet with Basic AI Model
Some of the related questions asked by James Wright on Solvelet
1. Convert the matrix [123014001] \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix} into row reduced echelon form.2. Use row reduced echelon form to determine if the system of equations has infinitely many solutions: 2x+3y=5 2x + 3y = 5 , 4x+6y=10 4x + 6y = 10 .,
DefinitionA matrix is in reuced row echelon form (rref) if it satisfies the following formatter criteria: (1) everypivot column contains a 1 as its top entry, when we read down the column, and (2) the pivot 1's are the only nonzero entries in the pivot columns.
Need topic explanation ? Get video explanation
@Copyright Solvelet 2024Privacy PolicyTerms and Condition