ai calculator learanadeAI

Rank and Nullity Calculator

Ask and get solution to your homeworkAsk now and get step-by-step solutions
Example
Created on 2024-06-20Asked by Jackson White (Solvelet student)
Find the rank and nullity of the matrix: A=(123456789). A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}.

Solution

To find the rank and nullity of the matrix A A : 1. **Row Reduce the Matrix:** Perform row operations to get the matrix into row echelon form: A=(123456789). A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}. R2R24R1(123036789). R_2 \rightarrow R_2 - 4R_1 \quad \Rightarrow \quad \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 9 \end{pmatrix}. R3R37R1(1230360612). R_3 \rightarrow R_3 - 7R_1 \quad \Rightarrow \quad \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{pmatrix}. R3R32R2(123036000). R_3 \rightarrow R_3 - 2R_2 \quad \Rightarrow \quad \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{pmatrix}. 2. **Determine the Rank:** The rank of a matrix is the number of non-zero rows in its row echelon form: Rank(A)=2. \text{Rank}(A) = 2. 3. **Calculate the Nullity:** The nullity of a matrix is the number of columns minus the rank: Nullity(A)=Number of columnsRank(A)=32=1. \text{Nullity}(A) = \text{Number of columns} - \text{Rank}(A) = 3 - 2 = 1. Therefore, the rank of the matrix is 2, and the nullity is 1. Solved on Solvelet with Basic AI Model
Some of the related questions asked by Levi Taylor on Solvelet
1. Determine the rank and nullity of the matrix A=[123014246] A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 2 & 4 & 6 \end{bmatrix} .2. Find a basis for the null space of the matrix B=[246123014]B = \begin{bmatrix} 2 & 4 & 6 \\ 1 & 2 & 3 \\ 0 & 1 & 4 \end{bmatrix}.
Definition
Need topic explanation ? Get video explanation
@Copyright Solvelet 2024Privacy PolicyTerms and Condition