ai calculator learanadeAI

Null Spaces and Column Spaces Calculator

Ask and get solution to your homeworkAsk now and get step-by-step solutions
Example
Created on 2024-06-20Asked by Avery Campbell (Solvelet student)
Find the null space and column space of the matrix: A=(123456789). A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}.

Solution

To find the null space and column space of the matrix A=(123456789), A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, follow these steps: 1. **Null Space**: - Solve Ax=0 A \mathbf{x} = \mathbf{0} . Perform row reduction on A A : (123456789)undefinedR2R24R1(123036789)undefinedR3R37R1(1230360612)undefinedR3R32R2(123036000). \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - 4R_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 9 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 - 7R_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 - 2R_2} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{pmatrix}. The system reduces to: {x1+2x2+3x3=03x26x3=0. \begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ -3x_2 - 6x_3 = 0 \end{cases}. From the second equation, x2=2x3 x_2 = -2x_3 . Substituting into the first equation: x1+2(2x3)+3x3=0    x1x3=0    x1=x3. x_1 + 2(-2x_3) + 3x_3 = 0 \implies x_1 - x_3 = 0 \implies x_1 = x_3. Therefore, the null space is: Null(A)=span{(121)}. \text{Null}(A) = \text{span} \left\{ \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right\}. 2. **Column Space**: - The pivot columns in the row-reduced form of A A are the first and second columns. - Therefore, the column space is spanned by the corresponding columns of the original matrix: Col(A)=span{(147),(258)}. \text{Col}(A) = \text{span} \left\{ \begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix} \right\}. Solved on Solvelet with Basic AI Model
Some of the related questions asked by Sophia White on Solvelet
1. Determine the basis for the null space and column space of the matrix A=[121242363] A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 3 & 6 & 3 \end{bmatrix} .2. Find the dimension of the null space and column space of the matrix B=[101010111]B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}.
DefinitionThe Null Space of a matrix A is the set of all vectors x in R^m (m x 1) such that Ax=0. The column space is nothing else than what his name suggests. It is the span of all of the columns of A. These are fundamental ideas to solve linear systems and to understand properties of matrices. For instance: If A=(13​26​) then NULLSPACE = (−21​) and COLSPACE = (13​).
Need topic explanation ? Get video explanation
@Copyright Solvelet 2024Privacy PolicyTerms and Condition