ai calculator learanadeAI

Matrices and Determinants Calculator

Ask and get solution to your homeworkAsk now and get step-by-step solutions
Example
Created on 2024-06-20Asked by Abigail Rodriguez (Solvelet student)
Find the determinant of the matrix A=(123014560). A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{pmatrix}.

Solution

To find the determinant of the matrix A=(123014560), A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{pmatrix}, we use the cofactor expansion along the first row: 1. The determinant of A A is: det(A)=1146020450+30156 \det(A) = 1 \cdot \begin{vmatrix} 1 & 4 \\ 6 & 0 \end{vmatrix} - 2 \cdot \begin{vmatrix} 0 & 4 \\ 5 & 0 \end{vmatrix} + 3 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 6 \end{vmatrix} 2. Calculate the 2x2 determinants (minors): 1460=(1)(0)(4)(6)=24 \begin{vmatrix} 1 & 4 \\ 6 & 0 \end{vmatrix} = (1)(0) - (4)(6) = -24 0450=(0)(0)(4)(5)=20 \begin{vmatrix} 0 & 4 \\ 5 & 0 \end{vmatrix} = (0)(0) - (4)(5) = -20 0156=(0)(6)(1)(5)=5 \begin{vmatrix} 0 & 1 \\ 5 & 6 \end{vmatrix} = (0)(6) - (1)(5) = -5 3. Substitute these values into the cofactor expansion: det(A)=1(24)2(20)+3(5) \det(A) = 1 \cdot (-24) - 2 \cdot (-20) + 3 \cdot (-5) 4. Simplify the expression: det(A)=24+4015=1 \det(A) = -24 + 40 - 15 = 1 Therefore, the determinant of the matrix A A is: det(A)=1 \det(A) = 1 Solved on Solvelet with Basic AI Model
Some of the related questions asked by Jacob Gonzalez on Solvelet
1. Find the inverse of the matrix A=[2113] A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} .2. Solve the system of equations represented by the matrix equation AX=BAX = B, where A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and B=[57]B = \begin{bmatrix} 5 \\ 7 \end{bmatrix}.
DefinitionArrays in mathematics, rectilinear arrays of numbers, which is the matrix, while a determinant is scalar associated with a square matrix. The determinant also conveys crucial qualities of the matrix regarding whether it is invertible. Now, the determinant of a 2x2 matrix [ ac​ bd​ ] = ad−bc For example: If the matrix is given (13​24​), then the determinant is 1∗4−2∗3=−2
Need topic explanation ? Get video explanation
@Copyright Solvelet 2024Privacy PolicyTerms and Condition