ai calculator learanadeAI

Integration by Trigonometric Substitution Calculator

Ask and get solution to your homeworkAsk now and get step-by-step solutions
Example
Created on 2024-06-20Asked by Ella Anderson (Solvelet student)
Evaluate the integral dx4x2 \int \frac{dx}{\sqrt{4 - x^2}} using trigonometric substitution.

Solution

To evaluate the integral dx4x2 \int \frac{dx}{\sqrt{4 - x^2}} using trigonometric substitution: Let x=2sinθ x = 2 \sin \theta : dx=2cosθdθ dx = 2 \cos \theta \, d\theta Substitute x x and dx dx : dx4x2=2cosθdθ44sin2θ \int \frac{dx}{\sqrt{4 - x^2}} = \int \frac{2 \cos \theta \, d\theta}{\sqrt{4 - 4 \sin^2 \theta}} =2cosθdθ4(1sin2θ) = \int \frac{2 \cos \theta \, d\theta}{\sqrt{4(1 - \sin^2 \theta)}} =2cosθdθ2cosθ = \int \frac{2 \cos \theta \, d\theta}{2 \cos \theta} =dθ = \int d\theta Integrate θ \theta : θ+C \theta + C Now, substitute back θ=sin1(x2) \theta = \sin^{-1} \left( \frac{x}{2} \right) : sin1(x2)+C \sin^{-1} \left( \frac{x}{2} \right) + C Therefore, the integral dx4x2 \int \frac{dx}{\sqrt{4 - x^2}} is: dx4x2=sin1(x2)+C \int \frac{dx}{\sqrt{4 - x^2}} = \sin^{-1} \left( \frac{x}{2} \right) + C Where C C is the constant of integration. Solved on Solvelet with Basic AI Model
Some of the related questions asked by Oliver Ramirez on Solvelet
1. Evaluate the integral a2x2dx\int \sqrt{a^2 - x^2} \, dx using trigonometric substitution,2. Compute the integral x2exdx\int x^2 e^x \, dx using integration by parts.,
DefinitionOne method of evaluating integrals of square roots of quadratic expressions is through the use of trigonometric substitution. Through substitution of a trigonometric function for the variable the integral is transformed into an easier to calculate trigonometric integral. If math has served me correctly, this is again true, but we can work this to our benefit by using clever trigonometry identities to simplify the integrand. Example: To find ∫1−x2​dx, use the substitution x=sinθ. Therefore, dx=cosθdθ⇒ 1−x2​=1−sin2θ​=cosθ. The integral is,∫cos2θdθ (1)This is solvable with trigonometric identities.
Need topic explanation ? Get video explanation
@Copyright Solvelet 2024Privacy PolicyTerms and Condition