ai calculator learanadeAI

Integrals with Radicals Calculator

Ask and get solution to your homeworkAsk now and get step-by-step solutions
Example
Created on 2024-06-20Asked by Emma Allen (Solvelet student)
Evaluate the integral 4x2dx \int \sqrt{4 - x^2} \, dx .

Solution

To evaluate the integral 4x2dx \int \sqrt{4 - x^2} \, dx : Use the trigonometric substitution x=2sinθ x = 2 \sin \theta : dx=2cosθdθ dx = 2 \cos \theta \, d\theta Substitute x x and dx dx : 4x2dx=4(2sinθ)22cosθdθ \int \sqrt{4 - x^2} \, dx = \int \sqrt{4 - (2 \sin \theta)^2} \cdot 2 \cos \theta \, d\theta =44sin2θ2cosθdθ = \int \sqrt{4 - 4 \sin^2 \theta} \cdot 2 \cos \theta \, d\theta =4(1sin2θ)2cosθdθ = \int \sqrt{4(1 - \sin^2 \theta)} \cdot 2 \cos \theta \, d\theta =21sin2θ2cosθdθ = \int 2 \sqrt{1 - \sin^2 \theta} \cdot 2 \cos \theta \, d\theta =2cos2θdθ = 2 \int \cos^2 \theta \, d\theta Use the identity cos2θ=12(1+cos2θ) \cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta) : =212(1+cos2θ)dθ = 2 \int \frac{1}{2}(1 + \cos 2\theta) \, d\theta =(1+cos2θ)dθ = \int (1 + \cos 2\theta) \, d\theta =dθ+cos2θdθ = \int d\theta + \int \cos 2\theta \, d\theta =θ+12sin2θ+C = \theta + \frac{1}{2} \sin 2\theta + C Now, substitute x=2sinθ x = 2 \sin \theta : =sin1(x2)+12sin(2sin1(x2))+C = \sin^{-1} \left( \frac{x}{2} \right) + \frac{1}{2} \sin \left( 2 \sin^{-1} \left( \frac{x}{2} \right) \right) + C Therefore, the integral 4x2dx \int \sqrt{4 - x^2} \, dx is: 4x2dx=sin1(x2)+12sin(2sin1(x2))+C \int \sqrt{4 - x^2} \, dx = \sin^{-1} \left( \frac{x}{2} \right) + \frac{1}{2} \sin \left( 2 \sin^{-1} \left( \frac{x}{2} \right) \right) + C Where C C is the constant of integration. Solved on Solvelet with Basic AI Model
Some of the related questions asked by Samuel Scott on Solvelet
1. Evaluate the integral 02x2+1dx\int_0^2 \sqrt{x^2 + 1} \, dx,2. Solve the first-order linear differential equation dydx+1xy=x2\frac{dy}{dx} + \frac{1}{x}y = x^2 using the integrating factor method.,
DefinitionThe integrals with radicals are functions that have a square root or a root for which we search the antiderivative. These kinds of integrals typically arise from a combination of substitution, trigonometric identities, or rationalization tricks to simplify the integrand. This has applications in geometry, physics, mechanics among many others. For Example ∫x​dx will use Power Rule for Integration and simplify to ∫x1/2dx=32​x3/2+C
Need topic explanation ? Get video explanation
@Copyright Solvelet 2024Privacy PolicyTerms and Condition