ai calculator learanadeAI

Half-Range Expansion Calculator

Ask and get solution to your homeworkAsk now and get step-by-step solutions
Example
Created on 2024-06-20Asked by Elizabeth Young (Solvelet student)
Find the half-range sine series for f(x)=x f(x) = x on the interval [0,L] [0, L] .

Solution

To find the half-range sine series for f(x)=x f(x) = x on the interval [0,L] [0, L] : The half-range sine series for f(x) f(x) is given by: f(x)n=1Bnsin(nπxL) f(x) \approx \sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi x}{L}\right) Where: Bn=2L0Lf(x)sin(nπxL)dx B_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx For f(x)=x f(x) = x : Bn=2L0Lxsin(nπxL)dx B_n = \frac{2}{L} \int_0^L x \sin\left(\frac{n\pi x}{L}\right) \, dx Using integration by parts, let: u=x,dv=sin(nπxL)dx u = x, \quad dv = \sin\left(\frac{n\pi x}{L}\right) \, dx du=dx,v=Lnπcos(nπxL) du = dx, \quad v = -\frac{L}{n\pi} \cos\left(\frac{n\pi x}{L}\right) Then: Bn=2L[Lnπxcos(nπxL)0L+Lnπ0Lcos(nπxL)dx] B_n = \frac{2}{L} \left[ -\frac{L}{n\pi} x \cos\left(\frac{n\pi x}{L}\right) \bigg|_0^L + \frac{L}{n\pi} \int_0^L \cos\left(\frac{n\pi x}{L}\right) \, dx \right] =2L[Lnπ(Lcos(nπ)0cos(0))+Lnπ(Lnπsin(nπxL)0L)] = \frac{2}{L} \left[ -\frac{L}{n\pi} \left( L \cos(n\pi) - 0 \cos(0) \right) + \frac{L}{n\pi} \left( \frac{L}{n\pi} \sin\left(\frac{n\pi x}{L}\right) \bigg|_0^L \right) \right] =2L[L2nπ(1)n+0] = \frac{2}{L} \left[ -\frac{L^2}{n\pi} (-1)^n + 0 \right] =2LL2nπ(1)n = \frac{2}{L} \cdot \frac{L^2}{n\pi} (-1)^n =2Lnπ(1)n = \frac{2L}{n\pi} (-1)^n Therefore: Bn=2Lnπ(1)n B_n = \frac{2L}{n\pi} (-1)^n The half-range sine series for f(x)=x f(x) = x is: f(x)n=12Lnπ(1)nsin(nπxL) f(x) \approx \sum_{n=1}^{\infty} \frac{2L}{n\pi} (-1)^n \sin\left(\frac{n\pi x}{L}\right) Solved on Solvelet with Basic AI Model
Some of the related questions asked by Benjamin Anderson on Solvelet
1. Express the function f(x)=x2f(x) = x^2 on the interval [0,π][0, \pi] as a Fourier sine series,2. Find the half-range expansion of the function g(x)=x2g(x) = x^2 on the interval [0,π][0, \pi].,
DefinitionThe half-range sine and cosine expansions, also called the half range expansion as a composition of an even and odd function, respectively, are terms in a Fourier series where a function defined on a finite interval [0,L], is extended as an even or odd part of the function on the interval [−L,L]. This extension is convenient for the analysis and solution of boundary value problems because it allows the function to be represented by either a sine (odd extension) or cosine (even extension) series. Partial differential equations, heat conductance, wave equations Half-range expansions Example: Suppose we have a function f(x) defined on [0,L] which can be expanded as f(x)=∑n=1∞​Bn​sin(Lnπx​) for an odd extension.
Need topic explanation ? Get video explanation
@Copyright Solvelet 2024Privacy PolicyTerms and Condition