ai calculator learanadeAI

Gram-Schmidt Process Calculator

Ask and get solution to your homeworkAsk now and get step-by-step solutions
Example
Created on 2024-06-20Asked by William Garcia (Solvelet student)
Use the Gram-Schmidt process to orthogonalize the set of vectors v1=(11) \mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} and v2=(10) \mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} .

Solution

To use the Gram-Schmidt process to orthogonalize the set of vectors v1=(1 1) \mathbf{v}_1 = \begin{pmatrix} 1 \ 1 \end{pmatrix} and v2=(1 0) \mathbf{v}_2 = \begin{pmatrix} 1 \ 0 \end{pmatrix} : 1. Let u1=v1=(1 1) \mathbf{u}_1 = \mathbf{v}_1 = \begin{pmatrix} 1 \ 1 \end{pmatrix} . 2. Compute the projection of v2 \mathbf{v}_2 onto u1 \mathbf{u}_1 : proju1v2=v2u1u1u1u1 \text{proj}_{\mathbf{u}_1} \mathbf{v}_2 = \frac{\mathbf{v}_2 \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 =(1 0)(1 1)(1 1)(1 1)(1 1) = \frac{\begin{pmatrix} 1 \ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \ 1 \end{pmatrix}}{\begin{pmatrix} 1 \ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \ 1 \end{pmatrix}} \begin{pmatrix} 1 \ 1 \end{pmatrix} =11+0112+12(1 1) = \frac{1 \cdot 1 + 0 \cdot 1}{1^2 + 1^2} \begin{pmatrix} 1 \ 1 \end{pmatrix} =12(1 1) = \frac{1}{2} \begin{pmatrix} 1 \ 1 \end{pmatrix} =(12 12) = \begin{pmatrix} \frac{1}{2} \ \frac{1}{2} \end{pmatrix} 3. Subtract the projection from v2 \mathbf{v}_2 to find u2 \mathbf{u}_2 : u2=v2proju1v2 \mathbf{u}_2 = \mathbf{v}_2 - \text{proj}_{\mathbf{u}_1} \mathbf{v}_2 =(1 0)(12 12) = \begin{pmatrix} 1 \ 0 \end{pmatrix} - \begin{pmatrix} \frac{1}{2} \ \frac{1}{2} \end{pmatrix} =(12 12) = \begin{pmatrix} \frac{1}{2} \ -\frac{1}{2} \end{pmatrix} The orthogonal set is: u1=(1 1),u2=(12 12) \mathbf{u}_1 = \begin{pmatrix} 1 \ 1 \end{pmatrix}, \quad \mathbf{u}_2 = \begin{pmatrix} \frac{1}{2} \ -\frac{1}{2} \end{pmatrix} Solved on Solvelet with Basic AI Model
Some of the related questions asked by Elijah Lee on Solvelet
1. Apply the Gram-Schmidt process to the set of vectors {(1,0,1),(1,1,0),(0,1,1)}\{(1, 0, -1), (1, 1, 0), (0, 1, 1)\} in R3\mathbb{R}^3,2. Orthogonalize the vectors (1,1,0)(1, 1, 0) and (0,1,1)(0, 1, 1) using the Gram-Schmidt process.,
DefinitionThe Gram-Schmidt process is a process for orthonormalizing a set of vectors, generating the orthogonal mass that spans the supplements. This is a repeated subtraction of the projection of the space’s existing basis vectors and orthogonalizing the vectors, based on the set’s product memory space. However, in this case, the Gram-Schmidt process is as opposed to the inner product memory space, the Euclidean storage image Rn as the most common SPACE with the specialized image is a point in this space...
Need topic explanation ? Get video explanation
@Copyright Solvelet 2024Privacy PolicyTerms and Condition